Mars Pathfinder Project # Lander Imager for Mars Pathfinder (IMP) Experiment Data Record (EDR) D-12003 May 1997 Version 1.2 ## JPL Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91109-8099 ## TABLE OF CONTENTS | | List of | Figures | i | | | |-----|---------------------------|-------------------------------------|-----|--|--| | | List of | Tables | i | | | | | Acrony | yms and Abbreviations | ii | | | | | Action | Items for Closure | iv | | | | | | | | | | | 1.0 | INTD | CODUCTION | | | | | 1.0 | 1.1 | Notation | 1 | | | | | 1.1 | Product and Transferal Mechanism. | | | | | | | | | | | | | 1.3 | Image Data Processing | | | | | | 1.4 | Coordinate System Components | | | | | | 1.4.1 | Coordinate Frames | | | | | | 1.4.1.1 | | | | | | | | IMP Frame | | | | | | | Local Level Frame | | | | | | 1.4.1.4 | | | | | | | 1.4.2 | Areocentric | | | | | | 1.4.3 | Areodetic | | | | | | 1.4.4 | Quaternion | 4 | | | | 2.0 | DETA | AILED SPECIFICATION | | | | | | 2.1 | Structure and Organization Overview | | | | | | 2.1.1 | MIPS Local Image File | | | | | | 2.1.2 | PDS Archived Label File | | | | | | 2.2 | File Naming Conventions | | | | | | 2.2.1 | VICAR Image Data File Names | | | | | | 2.2.2 | PDS Data File Names | | | | | | | | | | | | APP | ENDIC | ES | | | | | Α | IMP I | PDS/VICAR EDR Label Items | | | | | | A.1 | IMP PDS/VICAR EDR Label Items | A-1 | | | | В | IMP V | ICAR Property Labels | | | | | 2 | B.1 | IMP VICAR Property Labels | R_1 | | | | | <i>D</i> .1 | 1711 VICINCI TOPOLLY LADOD | | | | | C | IMPSOFT Label Description | | | | | | | | IMPSOFT Label Description | | | | ## **LIST OF FIGURES** | 1.1 | Pointing Parallax | ა | |-----|---|----| | 2.1 | VICAR Image Organization | 5 | | 2.2 | Template of Mars Pathfinder IMP EDR PDS Label File | 7 | | 2.3 | Sample Image File Name | | | 2.4 | Sample Label File Name | | | | LIST OF TABLES | | | 1.1 | Maximum Data Cat Siza for Mars Dathfindar IMD Image Data File | 9 | | | Maximum Data Set Size for Mars Pathfinder IMP Image Data File | | | 2.1 | VICAR Software for Mars Pathfinder IMP Image Data Files | | | 2.2 | File Extensions and Data File Types | 11 | ## **ACRONYMS AND ABBREVIATIONS** CAHV Camera model described by four vectors C, A, H and V CAHVOR Camera model CAHV with CCD and non-linear distortions accounted CCD Charge-Coupled Device CRDR Calibrated Radiometric Data Record EDR Experiment Data Record IMP Imager for Mars Pathfinder JPEG Joint Photographic Experts Group MIPS Multimission Image Processing Subsystem MPF Mars Pathfinder PDS Planetary Data System SFDU Standard Formatted Data Unit TBD To Be Determined VICAR Video Image Communication and Retrieval system ## **ACTION ITEMS FOR CLOSURE** | Item | Pages | Assignee | Closure Date | |---|-------|--------------|--------------| | IMP Calibration Report publication date | 1 | C. Shinohara | October 1995 | | Calibration header fields | all | A. Runkle | May 1996 | #### 1.0 INTRODUCTION This specification describes the image data products to be delivered to the Lander Imager for Mars Pathfinder (IMP) Team of the Mars Pathfinder Project (MPF) by the Multimission Image Processing Subsystem (MIPS). The specifications of the software that produce the products described herein are beyond the scope of this document. Applicable documents used in producing this specification include: - Planetary Data System Standards Reference, JPL D-7669, Part 2. - 2) 3) - Planetary Science Data Dictionary Document, JPL D-7116. IMP Flight Software Telemetry Format, University of Arizona, January 1995. - VICAR File Format, JPL, R. Deen, Interoffice Memorandum 384-92-196, September 1992. - IMP Calibration Report, University of Arizona, TBD. - DISRSOFT Image Processing Document, N. Thomas, J. Stüwe, Max-Planck Institute for Aeronomnie, Version 1.5, July 12, 1994. Mars Pathfinder AIM Phasing and Coordinate Frame Document, JPL D-12103, PF-300-4.0-04. - IMP Flight Software Command Format, University of Arizona, January 1995. - MIPS/MPF Catalog Schema, TBD. - 10) CODMAC reference documentation, TBD. #### 1.1 Notation This documentation uses the "Committee on Data Management and Computation" (CODMAC) data level numbering system. The data files refered to in this document are considered "level 2" or "Edited Data" (equivalent to NASA level 0). The data files are generated from "level 1" or "Raw Data" which is the telemetry packets within a project specific Standard Formatted Data Unit (SFDU) record. #### 1.2 **Product and Transferal Mechanism** The image data files and labels generated by MIPS software for Mars Pathfinder will be transferred electronically to the IMP Team with automatic electronic notification. Each image file will be generated in IMPSOFT header and file format. A separate, detached Planetary Data System (PDS) label file will be associated with each image file, but not delivered to the IMP Team. The image data files may be generated on any one of the following platforms: Sun Sparcstations running Solaris, Sun Sparcstation running SunOS, Silicon Graphics running IRIX. #### 1.3 **Image Data Processing** The data packaged in the files will be decoded, decompressed IMP image data in single frame form as an Experiment Data Record (EDR) and optionally in mosaic form. The single frame form of a standard image data set has maximum dimensions 256 lines by 256 samples. The other data sets and their image sizes are listed in Table 1.1. Single image frames can be mosaicked to produce a larger image. The VICAR software used to generate the image data set products are described in Table 2.1. | Image Type | Image Size
lines x samples | Pixel Size
(bits) | Description | |------------|-------------------------------|----------------------|---| | Image Data | 256 x 256 | 16 | Image data is unsigned and rotated from the way it is generated in the camera. Left images are rotated counter-clockwise, right images are rotated clockwise. | | Dark Strip | 256 x 8 | 16 | | | Null Strip | 256 x 8 | 16 | | | Flat Field | 256 x 256 | 16 | Flat Field data is unsigned and rotated from the way it is generated in the camera. Left images are rotated counterclockwise, right images are rotated clockwise. | | Dark Field | 256 x 256 | 16 | Dark Field data is unsigned and rotated from the way it is generated in the camera. Left images are rotated counterclockwise, right images are rotated clockwise. | | Histogram | 1 x 4096 | 16 | Histogram data continas a 4096 element histogram table where each sample corresponds tothe count of Dn values in the target image. | | Summed | 2 x 256 | 32 | All rows and columns are summed. The first record is the result of the row/column summing where each sample corresponds to the a row/coumn sum. Te second record is the result of column/row summing. | **Table 1.1.** — Maximum data set size for Mars Pathfinder IMP Image Data Files ## 1.4 Coordinate System Components The following paragraphs discuss the various types of coordinate system components, describing in more detail those supported by this project. #### 1.4.1 Coordinate Frames There are six different coordinate systems referenced in the MPF AIM Phasing Document (reference 7). The following four coordinate frames are supported by MIPS and identify pointing and location of the image data. #### 1.4.1.1 Lander Frame The Lander frame, identified as the L Frame, is a coordinate system that is fixed to the geometry of the lander. Most of the pointing information identified in the IMP EDR label items reference this coordinate system. #### **1.4.1.2 IMP Frame** The IMP frame is oriented such that all of the axis are colinear to the Lander Frame. The origin of the IMP Frame is offset from the Lander frame (See the MPF AIM Phasing document for the correct offset distances). NOTE: For the purpose of identifying camera pointing, this document treats the Lander and IMP Frames as identical. When commanding the pointing to a known object, the pointing vectors from the origins of the two coordinate systems will NOT be parallel, but converge at the object, basically an exaggerated parallax effect. See Figure 1.1. for a diagram showing the difference. **Figure 1.1** — Pointing Parallax This diagram shows the pointing angles from the different reference frames if the target of the pointing is a known object. The gimbal origin is also shown in this diagram to show the true ramifications of the pointing problems. The origin offsets are not accurately represented, however the concept is. #### 1.4.1.3 Local Level Frame The Local Level frame, identified as the M Frame, shares the same origin as the Lander Frame. The orientation of the coordiate frame is defined relative to the Mars areocentric coordinate system. #### 1.4.1.4 Mars Surface Fixed Frame The Mars Surface Fixed frame, identified as MFX Frame, is oriented such that all of the axis are colinear to the Local Level Frame. Originally the origin of the MFX is identical to the M Frame, but can be offset due to pedal movement, air-bag settleing or other translational effects. NOTE: For the purpose of identifying camera pointing, this document treates the Local Level and Mars Surface Fixed Frames as identical. This assumption has the same paralax problems as treating the IMP- and L-Frame pointing as identical. However, the origin offset between the Local Level and Mars Surface Fixed frames is not anticipated to be as large, reducing the paralax effect. #### 1.4.2 Areocentric Center normal coordinate system #### 1.4.3 Areodetic Surface normal coordinate system #### 1.4.4 Quaternion The quaternion is the coordinate transfor between the Lander Frame and the Local Level Frame. It uses the NAIF notation of the cosine of the angle followed by
the sine of the *X*, than *Y* and followed by *Z*. ### 2.0 DETAILED SPECIFICATION The following section describes in greater detail the files to be received by the IMP Team. ## 2.1 Structure and Organization Overview For each archived IMP image, one file is created, an image data file with an internal PDS label. This file constitutes a set of data to be managed and archived by MIPS as one unit. The image data will be a single image frame captured by the IMP camera . The nominal image frame size is 248 lines by 256 samples. The primary image data format is unsigned integers (halfword) for 12-bit image data. ## 2.1.1 MIPS Local Image File An image file consists of two major parts: the image header, which describes what the file is, and the image area, which contains the actual image data. The image header and image area are stored as a standard VICAR image. Ancillary data for the PDS labels are described in section 2.1.2. The line and sample numbering of the image data starts with an origin of (1,1) at the upper left of the image with increasing values both to the left and down. See figure 2.1 for a graphical representation of a nominal IMP EDR. **Figure 2.1** — VICAR Image Organization This figure identifies the basic structure of the VICAR IMP EDR data file. There is an ASCII label at the beginning of the file followed by the image data and an optional ancillary VICAR label in case not enough space was allocated for the label at the beginning of the file. **Table 2.1.** — VICAR Software for Mars Pathfinder IMP Image Data Files | Application | Description | |--------------|--| | MPFTELEMPROC | Fetches the image Standard Formatted Data Unit (SFDU) records from the Telemetry Delivery Subsystem (TDS), and reconstructs the image file from the telemetry data. If a version of this image exisits in the Working Mission Starage (WMS), the image data is compared the WMS version. If the new version has more data than the existing version, it replaces the WMS version. This application produces a VICAR image file with a subset of descriptive label items. It also accesses the catalog and SPICE kernels to supplement the ancillary image information from the telemetry data. | | MPFCAHV | Updates the label of an uncorrected image to contain a corrected CAHV camera model The program requires an accurate quaternion to generate proper results. | | MPFCAT2LAB | Updates the VICAR label based on infromation stored in the MIPS/MPF catalog. | | MPFMAP | Produces polar coordinate mosaics (azimuth versus elevation) from uncorrected input images using a CAHVOR camera model. | | MPFMOS | Produces pinhole camera mosaics using uncorrected input images and a CAHVOR camera model. | | MPFNAV | Generates an updated azimuth and elevation based on comparisson with an existing known image data set that can be directly compared. | | MPFTOPO | Generates a Digital Terrain Model from a stereo image data set. | | MPFVIEW | Calculates the distance to selectable points in a stereo image data set. | #### 2.1.2 PDS Archived Label File Every archived image data file contains a PDS label. This label conforms to the Planetary Data System standard for ancillary data management. The label contains information regarding the observation which produced the image. This observation information includes general descriptors such as target and time tags of the start of image acquisition, camera and spacecraft state parameters, data compression information, viewing and lighting geometry, spacecraft position and camera pointing, image dimensions, and processing history. This PDS labeled image is the IMP Team defined standard for transferring data between home institutes. The PDS label is an object-oriented file; the object to which the label refers is denoted by a statement of the form: in which the carat character '^' (also called a pointer in this context) indicates that the object starts at the given location. In a detached label, the location denotes the name of the file containing the object, along with the starting record or byte number, if there is more than one object. For example: $$^{IMAGE} = ("i392301.img", 3)$$ indicates that the IMAGE object begins at record 3 of the file i39230l.img. All labels contain 80-byte fixed-length records, with a carriage return character (ASCII 13) in the 79th byte and a line feed character (ASCII 10) in the 80th byte. This allows the files to be read by the HFS, MacOS, DOS, OS2, Unix, and VMS operating systems. Figure 2.2 is a template of the IMP EDR PDS label. See Appendix A for detailed definitions and formatting information for the label items. Also, note that label item values which are capitalized or those values enclosed in quotes but not italicized represent label item values to be written verbatim. Where and entire line is italicized, this represents label item/value pairs which occur only for image mosaic products or calibration files, as noted in the leading label comments. Text inside broken brackets, '<' and '>', identify the type of data that is valid for a label value. **Figure 2.2.** — Template of Mars Pathfinder IMP EDR PDS Label File ``` /* File Format and Length */ PDS_VERSION_ID = PDS3 RECORD_TYPE = FIXED_LENGTH RECORD_BYTES FILE_RECORDS = number of label records in the file /* Pointers to Start Records of Objects in File */ ^IMAGE = ("i<sclkstrtcnt>.<file extension>", <# of VICAR label records>) /* Image Description */ MISSION_NAME = "MARS PATHFINDER" SPACECRAFT_NAME = "PATHFINDER LANDER" INSTRUMENT NAME = "Imager for Mars Pathfinder (IMP)" TARGET_NAME = planetary body, feature or region IMAGE_ID = nnnnnnnnn = <FRAME_LEFT, FRAME_RIGHT, FRAME_BOTH, FRAME_ID FRAME_LEFT_HALF> RECEIVED PACKETS = nnn EXPECTED_PACKETS = nnn MAXIMUM = nnnn MEAN = ffff.fff MEDIAN = nnnn ``` Figure 2.2. — Template of Mars Pathfinder IMP EDR PDS Label File (continued) **MINIMUM** = nnnn STANDARD DEVIATION = ffff.fff = "Mars Pathfinder Mars Imager for Mars Pathfinder 2 EDR Vx.x" DATA_SET_NAME = "MPF-M-IMP-2-EDR-V1.0" DATA_SET_ID = "IMP EDR-<sclkstrtcnt>-<image observation type>-<image id>" PRODUCT ID PRODUCT_CREATION_TIME = vvvv-mm-ddThh:mm:ss.fff PRODUCER ID = "LPL/MIPS" = "Dr. Peter Smith, Lander IMP Team, and MIPS of JPL" PRODUCER FULL NAME PRODUCER_INSTITUTION_NAME = "Lunar and Planetary Laboratory, University of Arizona in concert with MIPS of Jet Propulsion Laboratory (JPL)" SOURCE PRODUCT ID = {<SPK file name>, <PCK file name>, <EK file name>, etc.} SOFTWARE VERSION ID = "Version of MPF telemetry processing software" PROCESSING HISTORY TEXT = "Listing of processing steps to produce this image." /* Time tags and observation descriptors */ APPLICATION PACKET ID APID DESCRIPTION = "string describing the purpose of observation" IMAGE_OBSERVATION_TYPE = "string describing the type of observation" IMAGE_TIME = yyyy-mm-ddThh:mm:ss.fff SPACECRAFT_CLOCK_START_COUNT = nnnnnn LOCAL_TIME = hh:mm:ss.fff EXPOSURE_DURATION = ffff.fff /* Camera and spacecraft state parameters */ FILTER_NAME = <filter name> FILTER_NUMBER INSTRUMENT_TEMPERATURE = <array of 2 floating point numbers> /* Lighting geometry */ SOLAR_AZIMUTH = fff.fffSOLAR_ELEVATION $= \pm ff.fff$ /* Spacecraft position and surface normal measure */ SPACECRAFT LATITUDE SPACECRAFT LONGITUDE = fff.fff SURFACE_NORMAL_AZIMUTH = fff.fffSURFACE_NORMAL_ELEVATION $= \pm ff.fff$ /* Camera model information */ CAMERA ORIENTATION QUATERNION = <array of 4 floating point numbers> FOCAL CENTER VECTOR = <array of 3 floating point numbers> POINTING_DIRECTION_VECTOR = <array of 3 floating point numbers> HORIZONTAL_IMAGE_PLANE_VECTOR = <array of 3 floating point numbers> VERTICAL_IMAGE_PLANE_VECTOR = <array of 3 floating point numbers> = <array of 3 floating point numbers> MLL_MFX_OFFSET_VECTOR MLL_MFX_OFFSET_ERROR = <array of 3 floating point numbers> Figure 2.2. — Template of Mars Pathfinder IMP EDR PDS Label File (continued) ``` AZIMUTH = fff.fff AZIMUTH ERROR = fff.fff = fff.fff AZIMUTHAL_FOV AZIMUTHAL_MOTOR_CLICKS = nnnn ELEVATION = \pm ff.fff = ff.fff ELEVATION ERROR ELEVATIONAL FOV = fff.fff ELEVATIONAL_MOTOR_CLICKS = nnnn SURFACE BASED CAMERA AZIMUTH = fff.fff SURFACE BASED CAMERA AZIMUTH ERROR = fff.fff SURFACE BASED CAMERA ELEVATION = \pm ff.fff SURFACE BASED CAMERA ELEVATION ERROR = ff.fff PIXEL HEIGHT = fff.fff PIXEL WIDTH = fff.fff /* IMP flight software commands */ TLM_CMD_DISCREPANCY_FLAG = <TRUE or FALSE> EXPOSURE TYPE = <AUTO, MANUAL, PRETIMED or NONE > EXPOSURE COUNT AUTO EXPOSURE PIXEL FRACTION = <fff.fff for AUTO only> AUTO EXPOSURE DATA CUT NUMBER = <nnnn for AUTO only> SQRT MINIMUM PIXEL /* Occurs only if SQRT is used */ = nnnnn SQRT MAXIMUM PIXEL /* Occurs only if SQRT is used */ = nnnnn DARK CURRENT DOWNLOAD FLAG = <TRUE or FALSE> DARK CURRENT CORRECTION FLAG = <TRUE or FALSE> FLAT FIELD CORRECTION FLAG = <TRUE or FALSE> BAD_PIXEL_REPLACEMENT_FLAG = <TRUE or FALSE> SHUTTER EFFECT CORRECTION FLAG = <TRUE or FALSE> SQRT COMPRESSION FLAG = <TRUE or FALSE> /* Compression Information, occurs only if compression was used */ INSTRUMENT COMPRESSION BLK SIZE = <(1,n) or (8,8)> INSTRUMENT_COMPRESSION_BLOCKS = nnnnn INSTRUMENT COMPRESSION DESC = "string describing the compression type" INSTRUMENT COMPRESSION MODE = <n for JPEG only> INSTRUMENT COMPRESSION PARAM = < nn for JPEG only> INSTRUMENT COMPRESSION QUALITY = <nn for JPEG only> INSTRUMENT COMPRESSION Q TABLE ID = <nn for JPEG only> INSTRUMENT_COMPRESSION_Q_TABLE = <Array of
64 elements> INSTRUMENT_COMPRESSION_Q_TYPE = <TABULAR for JPEG only> INSTRUMENT COMPRESSION SYNC RATE = <nnnn for RICE only> INSTRUMENT_COMPRESSION_TYPE = <"JPEG Discrete Cosine Transform (DCT)" or "Rice Adaptive Variable-length Coding (RICE)"> INSTRUMENT COMPRESSION RATE = fff.fff INSTRUMENT_COMPRESSION_RATIO = fff.fff ``` Figure 2.2. — Template of Mars Pathfinder IMP EDR PDS Label File (continued) ``` PIXEL AVERAGING HEIGHT = nn PIXEL_AVERAGING_WIDTH = nn RICE_START_OPTION = <nn for RICE only> RICE_OPTION_NUMBER = <nn for RICE only> /* Image mosaic characteristics - Not part of PDS data products */ AZIMUTH_OF_SAMPLE_ONE = nnnn MAP_PROJECTION_TYPE = name of projection MOSAIC_RESOLUTION = <ffff.fff for mosaics only> MOSAIC_REFERENCE_LINE = <ffff.fff for mosaics only> MOSAIC REFERENCE SAMPLE = <ffff.fff for mosaics only> = <ffff.fff for mosaics only> MOSAIC_REFERENCE_AZIMUTH MOSAIC_REFERENCE_ELEVATION = <ffff.fff for mosaics only> NADIR LINE = <nnnnn for mosaics only> NADIR_SAMPLE = <nnnnn for mosaics only> ORIENTATION = "zero azimuth is up" RADIAL MOSAIC RESOLUTION = <ffff.fff for mosaics only> ZERO_ELEVATION_IMAGE_LINE = <nnnnn for mosaics only> /* Calibration header fields (TBD) */ /* Image Object */ OBJECT = IMAGE = nnnn = nnnn LINE_SAMPLES SAMPLE_TYPE = MSB_UNSIGNED_INTEGER = <8 or 16 or 32> SAMPLE_BITS SAMPLE_BIT_MASK = <mask> = <32-bit integer value> CHECKSUM FIRST LINE = nnnn FIRST_LINE_SAMPLE = nnnn END_OBJECT = IMAGE END ``` ## 2.2 File Naming Conventions The following naming convention standard for IMP image data files is to be maintained by MIPS as a means of files management. It is suggested for all end-users of the products. ## 2.2.1 VICAR Image Data File Names For all data files stored in the MIPS Working Mission Storage (WMS), the filenames will be constructed with five parts as shown below in Figure 2.3. Figure 2.3. — Sample Image File Name **Instrument Identifier** - The instrument identifier will always be the lowercase letter 'i', representing an EDR from the IMP camera. **Time Reference Number** - The time reference number will be the 10-digit Spacecraft Clock Start Count, as described in Appendix A. The Spacecraft Clock Start Count is the same for left, right, null strip and dark strip images. **Frame Identifier** - The frame identifier will be a one character letter, 'l', 'r', 's', or 'n', refering to an image generated from the left, right, dark or null IMP frame respectively. **File Extension** - The file extension is a three character mnemonic. Table 2.3 shows the possible file extensions and the data files they represent. | Data File
Types | File
Extension | |--------------------|-------------------| | Image | .img | | Dark Strip | .str | | Null Strip | .nul | | Flat Field | .flt | | Dark Field | .drk | | Histogram | .hst | | Summed | .sum | **Table 2.2.** — File Extensions and Data File Types **Image Reference Number** - Finally, the image reference number is the 10-digit Image ID appended onto the file extension. #### 2.2.2 PDS Data File Names The PDS data filenames will be constructed with four of the five VICAR image data filenames components as shown below in Figure 2.4. **Figure 2.4.** — Sample PDS Data File Name Instrument Identifier - The instrument identifier will be the lowercase letter 'i'. **Time Reference Number** - The time reference number will be the least significant 6-digits of the Spacecraft Clock Start Count (the 4 significant digits will be used as part of the directory hierarchy storing the image files). **Frame Identifier** - The frame identifier will be a one character letter, 'l', 'r', 's', or 'n', referring to an image generated from the left, right, dark or null IMP frame respectively. **File Extension** - Finally, the file extension will be one of seven three-character mnemonics shown in Table 2 for the VICAR Image File Extensions. # APPENDIX A IMP PDS/VICAR EDR Label Items ### A.1 IMP PDS/VICAR EDR Label Items The following pages list alphabetically the label items which are contained in the PDS detached and VICAR labels associated with each image file. The list is broken into four sections. The first section contains the label items that will be in every image file. The second section defines the additional label items that are present in the PDS distributed image files. The third section defines the label items that will be in a mosaiced image file. The fourth section contains label items that are desireable, but have not yet been included into the file label structure. **Table A-1** — Common IMP Label Items | | Label Item | Description | Data Type
(organization) | Valid Values | |---|---|--|-----------------------------|--| | | APPLICATION_PACKET_ID | Classifies the telemetry packet from which the image data was obtained. This packet ID is handed to the Telemetry download. This value is based on a set of values specified in the Downlink Telemetry Documents (JPL). This acronym is APID. | J | (see IMP specification) | | | AUTO_EXPOSURE_DATA_CUT
AUTO_EXPOSURE_DATA_CUT_NUMBER | A value indicating a base for pixel values using AUTO_EXPOSURE_PIXEL_FRACTION as the percentage of pixels wanted above that value. | integer | [0, 4095] | | | AUTO_EXPOSURE_PIXEL_FRACTION | Fraction of pixels wanted to exceed AUTO_EXPOSURE_DATA_CUT_NUMBER, expressed as a percentage. This field is valid only if EXPOSURE_TYPE is AUTO. | | [0, 100.0] | | | AZIMUTH | Azimuth of camera at which image scene was captured, measured in degrees clockwise with respect to the $\rm Y_{l}$ axis of the Mars Pathfinder Lander Coordinate Frame (L Frame). See Mars Pathfinder AIM Phasing and Coordinate Frame Document (reference 7). | point | [0, 360.0] | | | AZIMUTH_ERROR` | Estimated error in the pointing accuracy of the IMP. This error can be improved by ground processing | floating
point | [0.0, 360.0] | | ı | AZIMUTH_FOV | The angular coverage of the imaged scene measured horizontally with respect to the image plane in spacecraft coordinates. | floating
point | [0.0, 360.0] | | | AZIMUTH_METHOD | Identifies the method used to calculate the azimuth. | (array) | TELEMETRY
MPFNAV-MIPS
BACKLASH-UoA | | | AZIMUTH_MOTOR_CLICKS | Azimuth measured in IMP motor step position in counts from the low hard stop. | integer | [0, 1023] | | | BAD_PIXEL_REPLACEMENT_FLAG | Indicates whether or not bad pixel replacement processing was completed. If set TRUE, certain pixels of the image will be replaced based on a bad pixel table. | character
(array) | TRUE, FALSE | ^{† -} for PDS files only * - for Mosaic products only **Table A-1** — Common IMP Label Items | Label Item | | Data Type
(organization) | Valid Values | |---|---|-----------------------------|--| | CAMERA_ORIENTATION_QUATERNION Get definition of QUATERNION for PDS | A collection of four values which describe the camera model. The four values are constructed from camera C pointing direction A, horizontal H, and vertical V. The values are mdefined in e local level coordinate system | | N.A. | | DARK_CURRENT_CORRECTION_FLAG | Indicates that dark current correction processing was completed and the image was adjusted by a dark current correction image. | character
(array) | TRUE, FALSE | | DOWNLOAD_TYPE
DOWNLOAD_FLAG | Specifies which image data to download; any or all of
the image data (IM), dark current strip (DS), and null
pixel data (NS). | varchar
(10) | NONE, DS, IM, DSIM,
NS, DSNS, IMNS,
DSIMNS | | EARTH_RECEIVED_START_TIME EARTH_RECEIVE_START_TIME | Identifies the ealiest time a packet was received that conatained data for the image. | character
array | YYYY-MM-
DDThh:mm:ssZ | | EARTH_RECEIVED_STOP_TIME EARTH_RECEIVE_STOP_TIME | Identifies the latest time a packet was received that conatained data for the image. | character
array | YYYY-MM-
DDThh:mm:ssZ | | ELEVATION | Elevation of camera at which image scene was captured, measured in degrees with respect to the X_l / Y_l plane of the Mars Pathfinder Lander Coordinate Frame (L Frame). Positive degrees are measured above the X_l / Y_l plane (negative Z_l direction). See Mars Pathfinder AIM Phasing and Coordinate Frame Document (reference 7). | floating
point | [-90.0, 90.0] | | ELEVATION_ERROR | Estimated error in the pointing accuracy of the IMP. This error can be improved by ground processing | floating
point | [0.0, 90.0] | | ELEVATION_FOV | The angular coverage of the imaged scene measured vertically with respect to the image plane in spacecraft coordinates. | floating
point | [0.0, 90.0] | | ELEVATION_METHOD | Identifies the method used to calculate the elevation | character
(array) | TELEMETRY
MPFNAV-MIPS
BACKLASH-UoA | | ELEVATION_MOTOR_CLICKS | Elevation measured in IMP motor step position in counts from the low hard stop. | integer | [0, 1023] | ^{† -} for PDS files only * - for Mosaic products only | Label Item | | Data Type
(organization) | Valid Values | |----------------------------
---|-----------------------------|---| | ERROR_PIXELS | Count of the number of pixels that are outside of the valid Dn range. The count is taken after all decompression and post decompression processing has completed. | integer | <any positive="" value=""></any> | | EXPECTED_PACKETS | Total number of telemetry packets which constitute a complete image, an image without missing data. | integer | <any positive="" value=""></any> | | EXPOSURE_COUNT | Maximum number of exposures to take. Valid values are dependent on EXPOSURE_TYPE. | integer | [0, 16] | | EXPOSURE_DURATION | Integration time for manual and auto exposure,
measured in milliseconds. Integration Time in IMP
Telemetry Format specification from the U. of Arizona. | floating
point | [0.5, 32767.5] | | EXPOSURE_TYPE | Exposure type for the image: auto, manual, pre-timed, incremental or none. Auto exposure allows for adjusting the expose time based on a previous exposure. Manual exposure is a single exposure with a set expose time. Pre-timed exposure uses the very last expose time used, regardless of what kind of exposure it was. No exposure indicates that the command moves only the camera and doesn't take an exposure. | character
(array) | AUTO, INCREMENTAL MANUAL, PRETIMED, NONE PDS limits this length to 8 characters | | FILTER_NAME | The name of the instrument filter through which the image was acquired. The number in the name refers to the effective wave length in nm of the filter for the left (L) or right (R) image. | character
(array) | for ftr 0, "L440_R440" for flt 1, "L450_R670" for flt 2, "L885_R947" for flt 3, "L925_R935" for flt 4, "L935_R990" for flt 5, "L670_R670" for flt 6, "L800_R750" for flt 7, "L860_R-DIOPTER" for flt 8, "L900_R600" for flt 9, "L930_R530" for 10, "L1000_R480" for 11, "L965_R965" | | FILTER_NUMBER | The number of the instrument filter through which the image was acquired. | integer | [0, 11] | | FLAT_FIELD_CORRECTION_FLAG | Indicates whether or not flat field correction processing was completed. If set TRUE, the image has been adjusted by a flat field correction image. | character
(array) | TRUE, FALSE | ^{† -} for PDS files only * - for Mosaic products only **Table A-1** — Common IMP Label Items | Label Item | Description | Data Type
(organization) | Valid Values | |--|---|---|---------------------------------------| | FOCAL_CENTER_VECTOR | Position of the entrance pupil point of the camera lens (focal center) measured relative to the Lander coordinate frame (L Frame) [7]. Corresponds to the C vector in the CAHV camera model. | floating
point
(array of 3
elements) | N.A. | | FRAME_ID Values have changes as per PDS length limits | Provides an identification for a particular instrument measurement frame. | character
(array) | LEFT,
RIGHT,
BOTH,
LEFT_HALF | | | | | PDS limit of 10 character length | | HORIZONTAL_IMAGE_PLANE_VECTOR | $\mathbf{H} = \mathbf{H}' + \mathbf{x}_C \mathbf{A}$, where \mathbf{H}' is a unit vector parallel to the x-axis in the camera's image plane, and \mathbf{x}_C is the point of intersection of a perpendicular dropped from the exit pupil point of the camera lens. \mathbf{H}' , \mathbf{A}' , \mathbf{V}' are mutually orthogonal. All the vectors are defined in the Lander coordinate frame (L Frame) [7]. Corresponds to the H vector in the CAHV camera model. | floating
point
(array of 3
elements) | N.A. | | HORIZONTAL_SBFRAME_OFFSET
FIRST_LINE_SAMPLE | Indicates the sample within a source image that corresponds to the first sample in a sub-image. | integer | [1, 256] | | IMAGE_ID | 10-digit number that uniquely identifies the observation parameters of an image. The most significant 4 digits identify the command sequence that contains the imaging command. If the image ID is even and non-zero, then this is the left frame from the camera. If the image ID is one greater than the left frame image ID (odd), then this is the right frame of a stereo image. | integer
t | <any positive="" value=""></any> | ^{† -} for PDS files only * - for Mosaic products only | Label Item | Description | Data Type
(organization) | Valid Values | |---|--|-----------------------------|---| | IMAGE_OBSERVATION_TYPE | Image data type as specified in the image packet as image information bits. | character
(array) | REGULAR, DARK_CURRENT, FLAT_FIELD, HISTOGRAM, SUMMATION, DARK_STRIP, NULL_STRIP | | | | | PDS limit of 10 character length | | IMAGE_TIME | Time at which the image was acquired, recorded in UTC format. Synonymous to SPACECRAFT_CLOCK_START_COUNT. | character
(array) | YYYY-MM-
DDThh:mm:ss.ffffZ | | INST_CMPRS_BLK_SIZE INSTRUMENT_COMPRESSION_BLK_SIZE | Dimension of a block for on-board compression; line dimension of the block is the first element, followed by the sample dimension of the block. | integer
(array) | for Rice, (1*n) where n
ranges from 4 to 24.
for JPEG, (8,8) | | INST_CMPRS_BLOCKS NSTRUMENT_COMPRESSION_BLOCKS | Number of blocks used to spatially segment the image file prior to on-board compression. | integer | <any positive="" value<br="">that is the image
number of pixels
divided by the block
area></any> | | INST_CMPRS_MODE NSTRUMENT_COMPRESSION_MODE | JPEG specific variable. Selects on-board compression target of image quality or compression factor in conjunction with Huffman or arithmetic entropy encoding with or without LCT. Odd modes select image quality, while even modes select compression factor as a target. Modes 1,2,5,6 use Huffman encoding; modes 3,4,7,8 use arithmetic encoding. Modes 5 through 8 use LCT. | integer | [1, 8] | | INST_CMPRS_NAME NSTRUMENT_COMPRESSION_TYPE | The type of on-board compression used for data storage and transmission. Contents of this value should be the full, unabbreviated, non-acronym name of coding or compression type. Examples of encoding types include but are not limited to Integer Cosine Transform (ICT), Block Truncation Coding (BTC), Discrete Cosine Transform (DCT), Joint Photographic Experts Group (JPEG) Standard DCT. | character
(array) | "Rice Adaptive
Variable-length
Coding (RICE)" or
"JPEG Discrete Cosine
Transform (DCT)" or
NONE | ^{† -} for PDS files only * - for Mosaic products only | Label Item | Description | Data Type
(organization) | Valid Values | |--|--|---|---| | INST_CMPRS_PARAM NSTRUMENT_COMPRESSION_PARAM | JPEG specific variable. Selects on-board compression rate by image quality or by compression factor, based on selected on-board compression mode. | integer | if compression mode is odd, [1, 99]; if compression mode is even, [2, 225]. | | INST_CMPRS_QUALITY NSTRUMENT_COMPRESSION_QUALITY | JPEG specific variable If an odd IMP compression mode is used for on-board compression, this is the desired image quality index. If an even IMP compression mode is used, this is the resultant image quality used to reach a desired on-board compression factor. | integer | [1, xxxx] | | INST_CMPRS_QUANTZ_TBL_ID
NSTRUMENT_COMPRESSION_Q_TABLE_ID | This name or code identifies the reference table used for quantization in the frequency domain for on-board transform compression. This name or code should be specific enough to allow the user of the data to have sufficient information to reference the quantization table used to compress the data. | character
(array) | [0, 15] | | INST_CMPRS_RATE
NSTRUMENT_COMPRESSION_RATE | Average number of bits needed to represent a pixel with an on-board compressed image. | floating
point | <any positive="" value=""></any> | | INST_CMPRS_RATIO
NSTRUMENT_COMPRESSION_RATIO | Ratio in bytes of the original, uncompressed data file length to its compressed form. For example, a compression
ratio of 5.00 means that on average, for every five bytes of input data, one byte of on-board compressed data was generated. | floating
point | <any positive="" value=""></any> | | INST_CMPRS_SYNC_BLK
NSTRUMENT_COMPRESSION_SYNC_RATE | Rice specific variable. Number of compressed blocks between sync markers. | integer | [1, 1024] | | INST_DEPLOYMENT_STATE NSTRUMENT_DEPLOYMENT_STATE_ID | Defines the position of the IMP mast | character
(array) | STOWED,
DEPLOYED,
UNKNOWN | | INST_TEMPERATURE NSTRUMENT_TEMPERATURE | The temperature of the sensor (CCD) array and camera head when the image was acquired, measured in Kelvin. | floating
point
(array of 2
elements) | <any positive="" value=""></any> | | INST_TEMPERATURE_COUNT | The raw temperature counts of the CCD and camera head when the image was taken. | integer
(array of 2
elements) | [0, 255] | ^{† -} for PDS files only * - for Mosaic products only **Table A-1** — Common IMP Label Items | Label Item | | Data Type
(organization) | Valid Values | |---------------------------|--|---|--| | INSTRUMENT_NAME | Full name of an instrument. | character
(array) | Imager for Mars
Pathfinder (IMP) | | LANDER_SURFACE_QUATERNION | A set of four values the define the relationship between
the Lander Frame and Local Level Frame coordinate
systems [7]. The values are stored in NAIF
representation of cosine, X, Y, Z. | double
(array of 4
elements) | N.A | | LOCAL_TIME | Reference time based on the IAU standard for the Martian prime meridian. For detailed description, see the Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 1991. | character
(array) | hh:mm:ss.fff PDS defines LOCAL_TIME as HH.hhhhhhh | | MAXIMUM | The maximum Dn value in the image file, between the IMP CCD valid range (0 to 4095). | integer | [0, 4095] | | MEAN | The mean pixel value for the pixels within the valid Dn range. | floating
point | [0.0, 4095.0] | | MEDIAN | The median pixel value for the pixels within the valid Dn range. This value will be at most 8 Dn greater than or eqaul to the true median value. | integer | [0, 4095] | | MINIMUM | The minimum Dn value in the image file, between the IMP CCD valid range (0 to 4095). | integer | [0, 4095] | | MISSION_NAME | A major planetary mission or project. | character
(array) | MARS PATHFINDER | | MLL_MFX_OFFSET_ERROR | An array of X, Y, and Z, measured in millimeters, defining the error range of the MLL to MFX offset determination. | floating
point
(array of 3
elements) | N.A. | | MLL_MFX_OFFSET_METHOD | Identifies the method used to calculate the MLL_MFX offset vector | character
(array) | NOT_DETERMINED
MPFVIEW-MIPS | | MLL_MFX_OFFSET_VECTOR | An array of X, Y, and Z offsets in millimeters from the origin of the Lander Frame (L Frame) to the Mars Surface Fixed Frame (MFX Frame). [7] | floating
point
(array of 3
elements) | N.A. | ^{† -} for PDS files only * - for Mosaic products only **Table A-1** — Common IMP Label Items | Label Item | | Data Type
(organization) | Valid Values | |---|--|---|---| | PIXEL_AVERAGING_HEIGHT | Block height for pixel averaging prior to image compression. | integer | [1, 255] required that mod(LINES / (PIXEL_AVERAGING _HEIGHT)) = 0 | | PIXEL_AVERAGING_WIDTH | Block width for pixel averaging prior to image compression. | integer | [1, 255] required that mod(SAMPLES / (PIXEL_AVERAGING _WIDTH)) = 0 | | PLANET_DAY_NUMBER | The martian day on which the image was taken. This is a counter that starts with '1' as the first day of surface operations. '0' refers to a pre surface operations image. | integer | <any poisitve<br="">number></any> | | POINTING_DIRECTION_VECTOR | A unit vector A in the direction in which the first (or second) camera is pointed; the direction of the symmetry axis of the camera lens as measure in the external coordinate system. All the vectors are defined in the Lander coordinate frame (L Frame) [7]. Corresponds to the A vector in the CAHV camera model. | floating
point
(array of 3
elements) | <tbd></tbd> | | PRODUCER_ID | Short name or acronym for the producer or producing team/group of a dataset. | string
(array) | "LPL of UofA and
MIPS of JPL" | | PRODUCT_CREATION_TIME | Defines the UTC time when a product was created. | time | YYYY-MM-
DDThh:mm:ssZ | | PRODUCT_ID | A permanent, unique identifier assigned to a data product by its producer. | character
(array) | "IMP_EDR-
<sclk_start_count>-
<image_observation_
type>-<image id=""/>"</image_observation_
</sclk_start_count> | | RECEIVED_PACKETS | Total number of telemetry packets which constitute the reconstructed image. | integer | <any positive="" value=""></any> | | RICE_OPTION_VALUE
RICE_OPTION_NUMBER | RICE compressor specific variable. | integer | between
2 and (data precision -
start_option + 1) | ^{† -} for PDS files only * - for Mosaic products only **Table A-1** — Common IMP Label Items | Label Item | Description | Data Type
(organization) | Valid Values | |------------------------------------|--|-----------------------------|--| | RICE_START_OPTION | RICE compressor specific variable. | integer | between 0 and the data
precision of pixels | | SHUTTER_EFFECT_CORRECTION_FLAG | A command flag set in the IMP Flight Software Command to remove the shutter, or fixed-pattern, from the image. | character
(array) | TRUE, FALSE, | | SOFTWARE_NAME
SOFTWARE_VERSION | Identifies the name and the version of the telemetry processing software used to generate the image data. | character
(array) | N.A. | | SOURCE_PRODUCT_ID | Filenames of SPICE kernels used to produce image data and derived data. | character
(array) | <standard spice<br="">kernel names for PCK,
SPK, etc.></standard> | | SPACECRAFT_CLOCK_START_COUNT | Lander time in seconds at which the image was acquired. Image Generation Time in the IMP Telemetry Format specification from the U. of Azirona. Synonymous to IMAGE_TIME. | integer | N.A. | | SPACECRAFT_NAME | Full, unabbreviated name of a spacecraft. | character
(array) | PATHFINDER
LANDER | | SQRT_COMPRESSION_FLAG | Flag for on-board square root compressing a 12 bit pixel down to an 8 bit pixel. | character
(array) | TRUE, FALSE | | SQRT_MAXIMUM_PIXEL | Maximum pixel value in 12-bit image prior to square root compression. | integer | [0, 4095] | | SQRT_MINIMUM_PIXEL | Minimum pixel value in 12-bit image prior to square root compression. | integer | [0, 4095] | | STANDARD_DEVIATION | Stardard deviation of the valid pixel values around the mean Dn value. | floating
point | [0.0, 4095.0] | | SURFACE_BASED_CAMERA_AZIMUTH | Azimuth of IMP camera measured in the Mars Surface Fixed frame (MFX frame). Azimuth is measured positively in degrees clockwise from the Martian north (spin axis), projected onto the local gravity horizontal plane (plane perpendicular to the gravity vector). Also generally known as NORTH_AZIMUTH. Mars Local Level or surface fixed coordinate system. | floating
point | [0.0, 360.0] | | SURFACE_BASED_CAMERA_AZIMUTH_ERROR | Estimated error in the pointing accuracy of the IMP. This error can be improved by ground processing | floating
point | [0.0, 360.0] | ^{† -} for PDS files only * - for Mosaic products only **Table A-1** — Common IMP Label Items | Label Item | Description | Data Type
(organization) | Valid Values | |--------------------------------------|---|---|---| | SURFACE_BASED_CAMERA_ELEVATION | Elevation of IMP camera measured in the Mars Surface Fixed frame (MFX frame). Elevation is measured in degrees up from the Mars Local Level or Surface Fixed X,Y plane. | point | [-90.0, 90.0] | | SURFACE_BASED_CAMERA_ELEVATION_ERROR | Estimated error in the pointing accuracy of the IMP. This error can be improved by ground processing | floating
point | [0.0, 90.0] | | SURFACE_BASED_CAMERA_METHOD | Identifies the method used to calculate the surface based camera pointing. | character
(array) | T.B.D. | | TARGET_NAME | Identifies a target, be it a planetary body, region or feature. | character
(array) | <mars or="" some<br="">Martian feature></mars> | |
TLM_CMD_DISCREPANCY_FLAG | Indicator of mismatch(es) found between IMP commands uplinked and IMP telemetry. | character
(array) | TRUE, FALSE | | VERTICAL_IMAGE_PLANE_VECTOR | $V=V'+y_CA$, where V' is a unit vector parallel to the y axis in the camera's image plane, and y_C is the point of intersection of a perpendicular dropped from the exit pupil point of the camera lens. H' , A' , V' are mutually orthogonal. All the vectors are defined in the Lander coordinate frame (L Frame) [7]. Corresponds to the V vector in the CAHV camera model. | - floating
point
(array of 3
elements) | N.A. | | VERTICAL_SUBFRAME_OFFSET FIRST_LINE | Indicates the line within a source image that corresponds to the first line in a sub-image. | integer | [1, 256] | ^{† -} for PDS files only * - for Mosaic products only | Label Item | Description | Data Type
(organization) | Valid Values | |---|--|-----------------------------|---| | | | | | | ^IMAGE [†] | Pointer to image dat portion of PDS file | | | | APPLICATION_PACKET_NAME APID_DESCRIPTION | Group name associated with APID. An example is "Lander image of the Rover" for APID #26. | character
(array) | <any descriptive="" text=""></any> | | BANDS | Indicates the number of spectral bands in the image. | integer | 1 | | CHECKSUM | An unsigned 32-bit sum of all data in the image data object. | integer | <any positive="" value=""></any> | | COMMAND_DESC
COMMAND_DESCRIPTION | Text which describes the uplinked command as found in COMMAND_NAME element. | varchar
(200) | <text directly<br="" taken="">from the Mars
Pathfinder Command
Dictionary, appendix A,
D-12500></text> | | DARK_CURRENT_DOWNLOAD_FLAG | Indicates if a dark current strip of the CCD was downlinked along with the image data. | character
(array) | TRUE, FALSE | | DATA_SET_ID | A unique alphanumeric identifier for a data set or a data product. This identifier consists of the identifiers for spacecraft, target, instrument, processing level, product acronym, and version number. | character
(array) | "MPF-M-IMP-2-EDR-
V1.0" | | DATA_SET_NAME | Full name given to a data set or product. This is an unabbreviated version of the DATA_SET_ID. | character
(array) | "Mars Pathfinder Mars
Imager for Mars
Pathfinder 2 EDR
V1.0" | | DETECTOR_PIXEL_HEIGHT | Height of pixel measured in microns. | floating
point | 23.0 | | DETECTOR_PIXEL_WIDTH | Width of pixel measured in microns. | floating
point | 23.0 | | FILE_RECORDS [†] | Number of physical file records. | integer | <any positive="" value=""></any> | | INST_CMPRS_DESC INSTRUMENT_COMPRESSION_DESC | Textual description of encoding type, which should include a reference to a journal paper, published text of some other publicly available, published material which definitively describes the on-board compression type. | | N.A. | ^{† -} for PDS files only * - for Mosaic products only Table A-2 — PDS IMP Label Items | Label Item | Description | Data Type
(organization) | Valid Values | |--|---|--------------------------------|---| | INST_CMPRS_QUANTZ_TYPE INSTRUMENT_COMPRESSION_Q_TYPE | Method of quantization used for the output of transform coders | character
(array) | TABULAR | | INTERCHANGE_FORMAT | Maner in which data elements are stored | character
(array) | BINARY | | LABEL_RECORDS [†] | Number of Physical file records that contain only label information. | integer | <any positive="" value=""></any> | | LINES | Total number of pixels along the vertical axis of an image. | integer | <any positive="" value=""></any> | | LINE_SAMPLES | Total number of pixels along the horizontal axis of an image. | integer | <any positive="" value=""></any> | | MOTOR_CLICKS_TO_AZIMUTH_TRANSFORM | Formula used to convert IMP motor steps to camera azimuth in the IMP frame. | character
string | N.A. | | MOTOR_CLICKS_TO_ELEVATION_TRANSFORM | Formula used to convert IMP motor steps to camera elevation in the IMP frame. | character
string | N.A. | | PDS_VERSION_ID | The version number of the PDS standards documents that is valid when a data product is created. | character
(array) | PDS3 | | PROCESSING_HISTORY_TEXT | Textual summation that provides an entry for each processing step and program used in generating a particular data file in the context of the Ground Data System. | character
(array) | N.A. | | PRODUCER_FULL_NAME | Full, unabbreviated name of the individual mainly responsible for the production of the data set. | string
(array) | "Mr, Peter Smith, the
IMP Team, and JPL
MIPS" | | PRODUCER_INSTITUTION_NAME | Identifies the institution associated with the production of the data set. | string
(array) | "Lunar and Planetary
Laboratory, University
of Arizona in concert
with Multimission
Image Processing
Subsystem of Jet
Propulsion
Laboratory" | ^{† -} for PDS files only * - for Mosaic products only Table A-2 — PDS IMP Label Items | Label Item | Description | Data Type
(organization | Valid Values
) | |---------------------------|--|----------------------------|--| | RECORD_BYTES [†] | Number of bytes in a physical file record, including record terminators and separators. | integer | <number_samples> * <bytes pixel=""> * <number_bands></number_bands></bytes></number_samples> | | RECORD_TYPE [†] | Record format of a file. | character
(array) | FIXED_LENGTH | | SAMPLE_BITS | Indicates the stored number of bits, or units of binary information, contained in a line_sample value. | integer | 8, 16, 32 | | SAMPLE_BIT_MASK | Identifies the active bits in a sample. | character | 2#11111111#,
2#0000111111111111# or
mask of 32 bits(all on) | | SAMPLE_TYPE | Data storage representation of sample value. | character
(array) | MSB_UNSIGNED_
INTEGER | ^{† -} for PDS files only * - for Mosaic products only Table A-3— Mosaic IMP Label Items | Label Item | Description | Data Type
(organization | Valid Values | |-----------------------------|---|----------------------------|---| | | | | | | AZIMUTH_OF_SAMPLE_ONE* | Identidifies azimuth of the first column. | floating
point | <any positive<br="">number></any> | | MAP_PROJECTION_TYPE* | Identifies the type of projection characteristic of a given map. | n character
(array) | SIMPLE_
CYLINDRICAL,
POLAR_SIMPLE
_CYLINDRICAL | | MOSAIC_REFERENCE_AZIMUTH* | Recomputed commanded azimuth of camera used to construct the image mosaic. | floating
point | <tbd></tbd> | | MOSAIC_REFERENCE_ELEVATION* | Recomputed commanded elevation of camera used to construct the image mosaic. | floating
point | <tbd></tbd> | | MOSAIC_REFERENCE_LINE* | Line number of the upper left corner of the mosaic in CAHV pixel coordinates. | floating
point | <tbd></tbd> | | MOSAIC_REFERENCE_SAMPLE* | Sample number of the upper left corner of the mosaic in CAHV pixel coordinates. | floating
point | <tbd></tbd> | | MOSAIC_RESOLUTION* | The ratio of one pixel to the distance measured in degrees between any two adjacent rows or two adjacent columns in a mosaicked image. | floating
point | N.A. | | NADIR_LINE* | Line to which the nadir projects provided the horizon is level in the image. Otherwise, it is the line to which -90 degrees elevation projects in local camera coordinates. | floating
point | N.A. | | NADIR_SAMPLE* | Sample to which the nadir projects provided the horizon is level in the image. Otherwise, it is the sample to which -90 degrees elevation projects in local camera coordinates. | floating
point | N.A. | | ORIENTATION* | Textual description of mosaicked image orientation with respect to the North pole of the target body. | character
(array) | "zero azimuth is up" | | RADIAL_MOSAIC_RESOLUTION* | The number of pixels per degree in the direction out from the nadir point. | floating
point | N.A. | | ZERO_ELEVATION_IMAGE_LINE* | Line in image at which zero elevation is found. | integer | N.A. | ^{† -} for PDS files only * - for Mosaic products only | Label Item | Description | Data Type
(organization) | Valid Values | |------------|-------------|-----------------------------|--------------| | | | | | NOTE: Mosaics images do not contain any other property labels other than the Mosaic Property label. The other property labels would not contain accurate information and would be more misleading than helpful. ^{† -} for PDS files only * - for Mosaic products only | Label Item | Description | Data Type
(organization) | Valid Values | |---
---|--|---------------| | INERTIAL_TO_AREOCENTRIC_MATRIX INERTIAL_TO_AEREOCENTRIC_TRANSFORM | The coordinate transformation from J2000 inertial frame to the body-fixed, planetocentric frame of Mars. This transformation is defined in terms of right ascension, declination, angular offset of the prime meridian of Mars as stored in the PCK kernel file provided by NAIF. | floating
point
(3 by 3
array) | N.A. | | INST_CMPRS_QUANTZ_TBL INSTRUMENT_COMPRESSION_Q_TABLE | This is the contents of the quanitization table specified by QUANTIZATION_TABLE_ID, an array of integers. | integer
(array) | N.A. | | MFX_TO_MBF_MATRIZ
MFX_TO_MBF_TRANSFORM | The coordinate transformation from Mars Surface Fixed frame (MFX frame) to the body-fixed frame of Mars (MBF frame). | floating
point
(3 by 3
array) | N.A. | | SOLAR_AZIMUTH (May be eliminated due to limited resources available in SPICE kernels) | The angular distance in a horizontal direction of the sun relative to the camera pointing for a particular image, measured in degrees clockwise in a spherical coordinate system. | floating
point | [0, 360.0] | | SOLAR_ELEVATION (May be eliminated due to limited resources available in SPICE kernels) | The angular distance in a vertical direction of the sun relative to the horizon as seen by the camera, measured in degrees up in a spherical coordinate system. | floating
point | [-90.0, 90.0] | | SPACECRAFT_ALTITUDE (May be eliminated due to limited resources available in SPICE kernels) | Distance (in meters) above gravitational center of Mars. | floating
point | N.A. | | PDS does not like this usage | | | | | SUB_SPACECRAFT_LATITUDE SPACECRAFT_LATITUDE (May be eliminated due to limited resources available in SPICE kernels) | Latitude on Mars at which the spacecraft rests using a Planetocentric coordinate system. | floating
point | [-90.0, 90.0] | | SUB_SPACECRAFT_LONGITUDE SPACECRAFT_LONGITUDE (May be eliminated due to limited resources available in SPICE kernels) | Degrees of East Longitude on Mars at which the spacecraft rests using a planetocentric coordinate system. | floating
point | [0.0, 360.0] | | SURFACE_NORMAL_AZIMUTH (May be eliminated due to limited resources available in SPICE kernels) | Azimuthal measure of surface normal at the ground intersection point from the geometric center of the Lander base to the gravitional center of Mars. | floating
point | N.A. | ^{† -} for PDS files only * - for Mosaic products only **Table A-4** — Desirable IMP Label Items | Label Item | Description | Data Type
(organization) | Valid Values | |--|--|-----------------------------|--------------| | SURFACE_NORMAL_ELEVATION (May be eliminated due to limited resources available in SPICE kernels) | Elevational measure of surface normal at the ground intersection point from the geometric center of the Lander base to the gravitional center of Mars. | floating
point | N.A. | ^{† -} for PDS files only * - for Mosaic products only # APPENDIX B IMP VICAR Property Labels ## **B.1** IMP VICAR Property Labels The following pages contain alphabetical listings of the VICAR label items which are placed in the header of each image file. The listings are arranged by VICAR property name. # **CAMERA_MODEL Property** **AZIMUTH AZIMUTH FOV** AZIMUTH_METHOD AZIMUTH_MOTOR_CLICKS **ELEVATION** ELEVATION_FOV **ELEVATION_METHOD** ELEVATION_MOTOR_CLICKS FOCAL_CENTER_VECTOR HORIZONTAL_IMAGE_PLANE_VECTOR LANDER_SURFACE_QUATERNION MLL_MFX_OFFSET_METHOD MLL MFX OFFSET VECTOR POINTING_DIRECTION_VECTOR SURFACE_BASED_CAMERA_AZIMUTH SURFACE_BASED_CAMERA_ELEVATION SURFACE_BASED_CAMERA_METHOD VERTICAL_IMAGE_PLANE_VECTOR # **IMP_COMMANDS Property** AUTO_EXPOSURE_DATA_CUT AUTO_EXPOSURE_PIXEL_FRACTION BAD_PIXEL_REPLACEMENT_FLAG DARK_CURRENT_CORRECTION_FLAG DOWNLOAD_TYPE EXPOSURE_COUNT FLAT_FIELD_CORRECTION_FLAG SHUTTER_EFFECT_CORRECTION_FLAG SQRT_COMPRESSION_FLAG # **DECOMPRESSED Property** INST_CMPRS_BLK_SIZE INST CMPRS BLOCKS INST_CMPRS_MODE INST_CMPRS_NAME INST_CMPRS_PARAM INST_CMPRS_QUALITY INST_CMPRS_QUANTZ_TBL_ID INST_CMPRS_RATE INST_CMPRS_RATIO INST_CMPRS_SYNC_BLK PIXEL_AVERAGING_HEIGHT PIXEL_AVERAGING_WIDTH RICE OPTION VALUE RICE_START_OPTION SQRT MAXIMUM PIXEL SQRT_MINIMUM_PIXEL #### **MOSAIC Property** (valid for mosaics only) AZIMUTH_OF_SAMPLE_ONE MAP PROJECTION TYPE $MOSAIC_REFERENCE_AZIMUTH$ MOSAIC_REFERENCE_ELEVATION MOSAIC_REFERENCE_LINE MOSAIC_REFERENCE_SAMPLE MOSAIC_RESOLUTION NADIR_LINE NADIR_SAMPLE **ORIENTATION** RADIAL_MOSAIC_RESOLUTION ZERO_ELEVATION_IMAGE_LINE #### **MPFTELEMPROC Property** EARTH_RECEIVED_START_TIME EARTH_RECEIVED_STOP_TIME EXPECTED_PACKETS INSTRUMENT_NAME **MISSION NAME** PRODUCER_ID PRODUCT_CREATION_TIME PRODUCT_ID RECEIVED_PACKETS SOFTWARE_NAME SOURCE_PRODUCT_ID SPACECRAFT_NAME TLM_CMD_DISCREPANCY_FLAG # **OBSERVATION Property** APPLICATION_PACKET_ID ERROR_PIXELS EXPOSURE_DURATION EXPOSURE_TYPE FILTER_NAME FILTER_NUMBER FRAME_ID $HORIZONTAL_SUBFRAME_OFFSET$ IMAGE_ID IMAGE_OBSERVATION_TYPE IMAGE_TIME INST_DEPLOYMENT_STATE INST_TEMPERATURE INST_TEMPERATURE_COUNT LOCAL_TIME MAXIMUM **MEAN** **MEDIAN** **MINIMUM** PLANET_DAY_NUMBER SPACECRAFT_CLOCK_START_COUNT STANDARD_DEVIATION TARGET_NAME VERTICAL_SUBFRAME_OFFSET #### **PDS Label items** APPLICATION_PACKET_NAME **BANDS CHECKSUM** COMMAND_DESC DARK_CURRENT_DOWNLOAD_FLAG DATA_SET_ID DATA_SET_NAME DETECTOR_PIXEL_HEIGHT DETECTOR_PIXEL_WIDTH INST_CMPRS_DESC INST_CMPRS_QUANTZ_TYPE INTERCHANGE_FORMAT LINES LINE_SAMPLES PDS_VERSION_ID PROCESSING_HISTORY_TEXT PRODUCER_FULL_NAME PRODUCER_INSTITUTION_NAME SAMPLE_BITS SAMPLE_BIT_MASK SAMPLE_TYPE #### **Desirable items** INERTIAL_TO_AREOCENTRIC_MATRIX INST_CMPRS_QUANTZ_TBL MFX_TO_MBF_MATRIX SOLAR_AZIMUTH SOLAR_ELEVATION SPACECRAFT_ALTITUDE SUB_SPACECRAFT_LATITUDE SUB_SPACECRAFT_LONGITUDE SURFACE_NORMAL_AZIMUTH SURFACE_NORMAL_ELEVATION # APPENDIX C IMPSOFT Label Description # **C.1** IMPSOFT Label Description The following pages contain describe the sequence of IMP DISRSOFT header fields. | IMPSOFT LABEL
Item & Name | Description and/or FSW Structure Element
(PDS keyword in boldface) | |------------------------------|---| | 0 H_TYPE | Header type (D=DISR, I=IMP)='I' | | 1 H_DIRECTORY | Directory file last stored in | | 2 H_FILENAME | Filename file was stored as | | 3 H_FILETIME | Time file was last written by D_WRITE | | 4 H_LENGTH | Length of header string array | | 5 H_DIMENSION | Number of dimensions in data ='2' | | 6 H_XSIZE | Number of columns
(default(256, strip=8), or cmd->col_max - cmd->col_min +1)
telem->num_rows
PDS LINE_SAMPLES | | 7 H_YSIZE | Number of rows (default(256, strip=8), or cmd->row_max - cmd->row_min +1) telem->num_cols PDS LINES | | 8 H_ZSIZE | Number of images unused | | 9 H_DATATYPE | Type of data = DB_WORD PDS SAMPLE_BITS | | 10 H_EXTENSION | Position in header where extension area starts | | 11 H_EXTRA | Position in header where extra area starts | | 12 H_PROCESS | Position in header where processing area starts PDS PROCESSING_HISTORY_TEXT <end disrsoft="" fields="" header="" of="" required=""></end> | | 13 H_PURPOSE | Purpose of observation bce d_purpose PDS APPLICATION_PACKET_NAME | | 14 H_SUBJECT | Subject of observation
bce d_subject
PDS TARGET_NAME | | 15 H_DATE | Date observation made PDS IMAGE_TIME | | IMPSOFT LABEL
Item & Name | Description and/or FSW Structure Element
(PDS keyword in boldface) | |------------------------------|---| | 16 H_ENGINEER | Engineer responsible
bce d_operator
PDS PRODUCER_FULL_NAME | | 17 H_SITE | Site of observation
bce d_site
PDS PRODUCER_INSTITUTION_NAME | | 18 H_SET_NAME | Text description of data set bce PDS DATA_SET_NAME | | 19 H_PRODUCT_ID | Unique identifier of image amongst all PDS products PDS PRODUCT_ID | | 20 H_EXPOSURE_COUN | Multiple exposure loop counter for auto expose, flat fields, dark fields cmd->expose_count PDS EXPOSURE_COUNT | | 21 H_OPTICS_TEMP | Camera optics temperature in [K] | | 22 H_CCDTEMP | On chip CCD temperature in [K] bce computed from telem->ccd_temperature PDS INST_TEMPERATURE | | 23 H_REF_TEMP | CCD electronics reference temperature (MPAE field) | | 24 H_ELEVATION_R0 | obsolete field for camera elevation (raw counts) | | 25 H_FRAME | CCD frame number cmd->frame (NOTE: overall exposure frame, not image frame) PDS FRAME_ID | | 26 H_EXPOSURE_TYPE | CCD exposure type cmd->expose_type PDS EXPOSURE_TYPE | | 27 H_AUTO_DATA_CUT | Auto Exposure cutoff pixel value cmd->data_num PDS AUTO_EXPOSURE_DATA_CUT | | 28 H_AUTO_PERCENT | Auto Exposure target % of pixels above cutoff value cmd->pixel_frac PDS AUTO_EXPOSURE_PIXEL_FRACTION | | 29 H_AUTO_DFLT_TIM | Auto Exposure initial exposure time cmd->integration_time | | 30 H_DETECTOR | Detector type (CCD, IR, PHOTOMETER) (MPAE field) | | IMPSOFT LABEL
Item & Name | Description and/or FSW Structure Element
(PDS keyword in boldface) | |------------------------------|--| | 31 H_SENSOR_ID | Sensor ID number (MPAE field) | | 32 H_COL_MIN | starting column of
subframe
cmd->col_min (if subframing)
PDS HORIZONTAL_SUBFRAME_OFFSET | | 33 H_COL_MAX | last column of subframe
cmd->col_max (if subframing)
PDS HORIZONTAL_SUBFRAME_OFFSET + LINE_SAMPLES | | -1 | | | 34 H_ROW_MIN | top row of subframe
cmd->row_min (if subframing)
PDS VERTICAL_SUBFRAME_OFFSET | | 35 H_ROW_MAX | bottom row of subframe
cmd->row_max (if subframing)
PDS VERTICAL_SUBFRAME_OFFSET+ LINES - 1 | | 36 H_EXPTIME | integration time [sec] for CCD measurement (float)cmd->integration_time/2000. (S.B. telem->) PDS EXPOSURE_DURATION | | 37 H_IMAGE_TIME | start time of exposure PDS IMAGE_TIME | | 38 H_ABSCAL | Absolute calibration factor used | | 39 H_LOCAL_TIME | PDS LOCAL_TIME | | 40 H_COMP_RATE | bits/pixel (only if compression is used) PDS INST_CMPRS_RATE | | 41 H_COMP_TYPE | compression type "None", "Lossless","Huffman Arithmetic Quality Ratio" cmd->compression_type (convert to string) PDS INST_CMPRS_NAME | | 42 H_COMP_QUALITY | quality factor for compression
cmd->compression_value (if jpeg quality compression)
(telem->cmpr_data_1 if jpeg compression)
PDS_INST_CMPRS_QUALITY | | 43 H_COMP_RATIO | compression ratio
cmd->compression_value (if jpeg ratio compression)
PDS_INST_CMPRS_RATIO | | 44 H_Q_TABLE | Q table for compression cmd->Q_table (if doing jpeg compression) | | IMPSOFT LABEL
Item & Name | Description and/or FSW Structure Element (PDS keyword in boldface) | |------------------------------|---| | | PDS INST_CMPRS_QUANTZ_TBL_ID | | 45 H_AC_TABLE | AC table for Huffman compression cmd->AC_table (if doing jpeg huffman compression) | | 46 H_DC_TABLE | DC table for Huffman compression cmd->DC_table (if doing jpeg huffman compression) | | 47 H_SQRT_COMPRESS
 | Square root compression/correction type cmd->sqrt_type (if used) (telem->image_info[1:3]) PDS SQRT_COMPRESSION_TYPE | | 48 H_BLOCK_SIZE | Obsolete?? | | 49 H_CCD_SIDE | CCD side exposed for this image cmd->frame PDS FRAME_ID | | 50 H_COORD_XL | image coordinates (lower x) (MPAE field) | | 51 H_COORD_YL | image coordinates (lower y) (MPAE field) | | 52 H_COORD_XU | image coordinates (upper x) (MPAE field) | | 53 H_COORD_YU | image coordinates (upper y) (MPAE field) | | 54 H_FILTER | filter number in use
cmd->filter_num (telem->filter_num)
PDS FILTER_NUMBER | | 55 H_GAIN | gain factor (MPAE) | | 56 H_DC_OFFSET | DC offset (MPAE) | | 57 H_FILTER_NAME | filter in use PDS FILTER_NAME | | 58 H_PIXEL_AVG_H | block height for pixel averaging prior to image compression PDS PIXEL_AVERAGING_HEIGHT | | 59 H_PIXEL_AVG_W | block width for pixel averaging prior to image compression PDS PIXEL_AVERAGING_WIDTH | | 60 H_TIMING_GEN | timing generator code (MPAE) | | 61 H_CAMERA | BB/EM/FM model (MPAE) | | 62 H_VACUUM | vacuum or not (yes or no) (MPAE) | | 63 H_OPTICS | additional optics on bench (MPAE) | | IMPSOFT L.
Item & Nam | | Description and/or FSW Structure Element (PDS keyword in boldface) | |--------------------------|-------------|---| | | | | | 64 H_TEST | LAMP | external test lamp (MPAE) | | 65 H_SHU | T_TIME | opening time of CCD test shutter (MPAE) | | 66 H_LED_ | _TIME | LED on time (MPAE) | | 67 H_SC_L | AT | Latitude on target body at which the spacecraft rests PDS SUB_SPACECRAFT_LATITUDE | | 68 H_SC_I | LON | Longitude on target body at which the spacecraft rests PDS SUB_SPACECRAFT_LONGITUDE | | 69 H_SPIK | E_CORRECT | | | 70 H_DAR | K_CORRECT | dark correction flag PDS DARK_CURRENT_CORRECTION_FLAG | | 71 H_FLA7 | r_correct | flat field correction flag PDS FLAT_FIELD_CORRECTION_FLAG | | 72 H_BAD | PIX_CORRECT | bad pixel correction flag PDS BAD_PIXEL_REPLACEMENT_FLAG | | 73 H_SHU | TTER_CORRE | shutter effect correction flag
PDS SHUTTER_EFFECT_CORRECTION_FLAG | | 74 H_IMA | GE_MIN | Minimum pixel value on the image telem->min_val (only if doing sqrt compression) PDS SQRT_MINIMUM_PIXEL_VALUE | | 75 H_IMA | GE_MAX | Maximum pixel value on the image telem->max_val (only if doing sqrt compression) PDS SQRT_MAXIMUM_PIXEL_VALUE | | 76 H_RICE | E_BLOCK | Block size for Rice compression
telem->block
PDS INST_CMPRS_BLK_SIZE
(for RICE only) | | 77 H_RICE | COPTION | Start option for Rice compression telem->cmpr_data_1 PDS RICE_START_OPTION | | 78 H_RICE | _NUMBER | Number of options in Rice compression telem->cmpr_data_2 PDS RICE_OPTION_VALUE | | 79 H_SYN0 | C_INTERVAL | Compression synchronization interval telem->sync | | IMPSOFT LABEL
Item & Name | Description and/or FSW Structure Element (PDS keyword in boldface) | |------------------------------|--| | | PDS INST_CMPRS_SYNC_BLK | | 80 H_GSE_REV | GSE revision creating data set | | 81 H_CONFIG_FILE | configuration file associated with data set | | 82 H_TEST_LOG | test log filename generating data | | 83 H_REC_BEG | first record of this data set in test log | | 84 H_REC_END | last record of this data set in test log | | 85 H_PIXEL_UNITS | units of pixels | | 86 H_SET_ID | data set id
PDS DATA_SET_ID | | 87 H_SET_NUMBER | sequential number of this data set
telem->image_id (cmd->image_id) | | 88 H_MISSION_TIME | mission time in seconds PDS SPACECRAFT_CLOCK_START_COUNT | | 89 H_CYCLE_NUMBER | sequential number of cycles | | 90 H_CYCLE_TYPE | cycle type | | 91 H_SOLAR_AZIMUTH | sun azimuth (degrees) PDS SOLAR_AZIMUTH | | 92 H_SOLAR_ELEV | sun elevation (degrees) | | 93 H_NORTH_AZIMUTH | PDS SOLAR_ELEVATION Angle between north pole and image center | | 94 H_IR_MEAS | number of IR sets performed during cycle | | 95 H_VIOLET_MEAS | number of violet sets performed during cycle | | 96 H_AZIMUTH | camera azimuth (degrees) relative to IMP frame base PDS AZIMUTH | | 97 H_ELEVATION | camera elevation (degrees) relative to IMP frame base PDS ELEVATION | | 98 H_AZIMUTH_FOV | azimuth field-of-view of scene (degrees) PDS AZIMUTHAL_FOV | | 99 H_ELEVATION_FOV | elevation field-of-view of image (degrees) PDS ELEVATIONAL_FOV | | IMPSOFT LABEL
Item & Name | Description and/or FSW Structure Element (PDS keyword in boldface) | |------------------------------|--| | 100 H_FOCAL_LENGTH | Camera focal length (mm) | | 101 H_PIXEL_HEIGHT | height of a pixel (microns) PDS DETECTOR_PIXEL_HEIGHT | | 102 H_PIXEL_WIDTH | width of a pixel (microns) PDS DETECTOR_PIXEL_WIDTH | | 103 H_COMP_TIME | DCT compression time (seconds) | | 104 H_COMP_RECORD | DCT compression records | | 105 H_PACKET_ID | JPL telemetry packet id cmd ->packet_id PDS APPLICATION_PACKET_ID | | 106 H_PACKETS_SENT | number of packets expected in image telem->of_total PDS EXPECTED_PACKETS | | 107 H_PACKETS_RCVD | number of packets actually received bce packet count PDS RECEIVED_PACKETS | | 108 H_DEPLOY_STATE | PDS deploy state | | 109 H_PARAMETER_TBL | | | 110 H_FLAT_FIELD_TBL | | | 111 H_BADPIXEL_TBL | | | 112 H_DARKCURRENT_I | | | 113 H_MFX_FRAME_AZ | camera azimuth measured in the Mars Surface Fixed frame (MFX frame) PDS SURFACE_BASED_CAMERA_AZIMUTH | | frame | |-------| VEC | | | | IMPSOFT LABEL
Item & Name | Description and/or FSW Structure Element (PDS keyword in boldface) | |---------------------------------|---| | | PDS POINTING_DIRECTION_VECTOR | | 132 H_DIR_Y | camera pointing, y component of vector cmd { x_az , y_el , z_z } iff coor_type == COOR_UNIT_VEC | | 133 H_DIR_Z | camera pointing, z component of vector cmd { x_az, y_el, z_z } iff coor_type == COOR_UNIT_VEC | | 134 H_L_FRAME_AZ
 | camera azimuth measured in the Lander frame PDS LANDER_FRAME_CAMERA_AZIMUTH | | 135 H_L_FRAME_EL
 | camera elevation measured in the Lander frame PDS LANDER_FRAME_CAMERA_ELEVATION | | 136 H_AUX_BRD_VOLT | divided 12V in volts | | 137 H_CPU_BRD_VOLT | divided 5V in volts | | 138 H_ADC_OFFSET | 0V input; ADC offset | | 139 H_ADC_GAIN | 2.5 input; gain of ADC | | /* Calibration Header Fields *. | / | | 140 H_TEST_TYPE | calibration test type
string
bce: ? | | 141 H_TARGET_DISTAN | calibration distance to target (cm) float bce: ? | | 142 H_SERIES | calibration LSF/MSF Series string bce: ? | | 143 H_ENV_CHAMBER | calibration environmental chamber string bce: ? | | 144 H_CAL_CCD_TEMP | calibration external ccd temperature [K] bce: ? | | 145 H_BASEPLATE_TEMP | calibration baseplate temperature [K] float bce: ? | | 146 H_PRESSURE | calibration pressure (Torr)
float
bce: ? | | IMPSOFT LABEL
Item & Name | Description and/or FSW Structure Element (PDS keyword in boldface) | |------------------------------|---| | 147 H_STAGE_POSITN | calibration linear stage position (mm)
float
bce: ? | | 148 H_STAGE_ROT | calibration rotary stage position (degrees) float bce: ? | | 149 H_TARGET_TYPE | calibration target type
string
bce: ? | | 150 H_MONO_WAVELEN | calibration monochromoeter wavelength (nm) float bce: ? | | 151 H_MONO_BANDWID | calibration monochrometer bandwidth (nm) float bce: ? | | 152 H_STD_DETECTOR | calibration standard detector float bce: ? | | 153 H_POLARIZATION | calibration polarization angle (degrees) float bce: ? | | 154 H_SLIT_WIDTH | calibration slit width (mm)
float
bce: ? | | 155 H_HW_MODEL | hardware model (flight, proto, engineer) | | 156 H_NUM_BINS | number of IR bins for data collection | | 157 H_SURF_LAMP_REP | surface lamp rep. number | | 158 H_SUN_LAMP_REP | sun sensor LED rep. number | | 159 H_CAL1_VOLT1 | voltage on cal. lamp 1 | | 160 H_QUATERNION |
camera orientation quaternion (first array element) PDS LANDER_SURFACE_QUATERNION | | 161 H_Q_Y | second array element of quaterion PDS LANDER_SURFACE_QUATERNION | | 162 H_Q_Z | third array element of quaterion PDS LANDER_SURFACE_QUATERNION | | IMPSOFT LABEL
Item & Name | Description and/or FSW Structure Element (PDS keyword in boldface) | |------------------------------|---| | | | | 163 H_Q_W | fourth array element of quaterion PDS LANDER_SURFACE_QUATERNION | | 164 H_FOCAL_VECTOR | camera model focal center position (first element of vector) PDS FOCAL_CENTER_VECTOR | | 165 H_F_Y | second element of focal center vector PDS FOCAL_CENTER_VECTOR | | 166 H_F_Z | third element of focal center vector PDS FOCAL_CENTER_VECTOR | | 167 H_HORIZONTAL_V | image plane horizontal direction vector (first element of vector) PDS HORIZONTAL_IMAGE_PLANE_VECTOR | | 168 H_H_Y | second element of horizontal direction vector PDS HORIZONTAL_IMAGE_PLANE_VECTOR | | 169 H_H_Z | third element of horizontal direction vector PDS HORIZONTAL_IMAGE_PLANE_VECTOR | | 170 H_VERTICAL_VEC | image plane vertical direction vector (first element of vector) PDS VERTICAL_IMAGE_PLANE_VECTOR | | 171 H_V_Y | image plane vertical direction vector (second element of vector) PDS VERTICAL_IMAGE_PLANE_VECTOR | | 172 H_V_Z | image plane vertical direction vector (third element of vector) PDS VERTICAL_IMAGE_PLANE_VECTOR | | 173 H_NUM_HEAT | number of heaters tested | | 174 H_NUM_TRIPLET | number of sun triplets in data set | | 175 H_NUM_TIME_PAIRS | number of time data pairs | | 176 H_DUMP_START | address of first word in dump | | 177 H_DUMP_LEN | number of words in dump set | | 178 H_DUMP_FLAG | packing flag | | 179 H_MESSAGE | message type code | | 180 H_MESSAGE_ID | additional information code | | 181 H_NUM_BAD | number of bad ranges in RAM or EEPROM | | 182 H_LOTS_BAD | flag - lots bad RAM or EEPROM areas | | IMPSOFT LABEL
Item & Name | Description and/or FSW Structure Element (PDS keyword in boldface) | |------------------------------|---| | | | | 183 H_CCDTEMP_R | raw CCD temperature telem->ccd_temperature | | | PDS INST_TEMPERATURE | | 184 H_EXPTIME_R | raw exposure time reading | | | telem-> integration_time (cmd->integration_time) PDS EXPOSURE_DURATION | | 185 H_MISSION_TIME_R | raw mission time reading | | | telem -> image_time PDS SPACECRAFT_CLOCK_START_COUNT | | 100 II AZIMITII D | | | 186 H_AZIMUTH_R | raw azimuth reading cmd->azimuth) | | | PDS AZIMUTHAL_MOTOR_CLICKS | | 187 H_ELEVATION_R | raw elevation counts
cmd->elevation (telem->elevation) | | | PDS ELEVATIONAL_MOTOR_CLICKS | | 188 H_SPIN_R | raw spin rate reading | | 189 H_TARGET_AZ_R | raw target azimuth | | 190 H_ACTUAL_AZ_R | raw actual azimuth | | 191 H_IR_CHP_TMPB_R | raw IR chip temperature start | | 192 H_IR_CHP_TMPE_R | raw IR chip temperature end | | 193 H_PRECHARGE_R | raw average precharge voltage | | 194 H_IR_COL_TIME_R | raw IR collection time used | | 195 H_CAL_TMP_SORS_R | raw cal. source voltage | | 196 H_CCDLUG_TEMP_R | raw CCD thermal lug temperature | | 197 H_STRAP_TEMP_R | raw strap temperature | | 198 H_OPTICS_TEMP_R | raw conduit temperature | | 199 H_VIOLET_TEMP_R | raw violet temperature | | 200 H_SH_AUX_TEMP_R | raw SH aux board temp | | 201 H_SH_BOX_TEMP_R | raw SH box temperature | | 202 H_EA_BOX_TEMP_R | raw EA box temperature | | IMPSOFT LABEL
Item & Name | Description and/or FSW Structure Element (PDS keyword in boldface) | |------------------------------|--| | | | | 203 H_AUX_BRD_VOLT_R | raw divided 12V | | 204 H_CPU_BRD_VOLT_R | raw divided 5V | | 205 H_ADC_OFFSET_R | raw 0V input | | 206 H_ADC_GAIN_R | raw 2.5V input | | 207 H_CAL1_VOLT1_R | raw cal. lamp 1 voltage | | 208 H_CAL1_VOLT2_R | raw cal. lamp 1 voltage | | 209 H_CAL2_VOLT1_R | raw cal. lamp 2 voltage | | 210 H_CAL2_VOLT2_R | raw cal. lamp 2 voltage | | 211 H_CAL3_VOLT1_R | raw cal. lamp 3 voltage | | 212 H_CAL3_VOLT2_R | raw cal. lamp 3 voltage | | 213 H_SURF_VOLT1_R | raw surf. lamp voltage | | 214 H_SURF_VOLT2_R | raw surf. lamp voltage | | 215 H_SUN_LED_VLT1_R | raw sun sensor LED volt | | 216 H_SUN_LED_VLT2_R | raw sun sensor LED volt | | 217 H_OBJECTIVE | objective of test | | 218 H_DUMMY | flag for dummy detector | | 219 H_MODEL | DISR model for MMC | | 220 H_DCOFFSETU_R | raw ADC value of DC offset voltage, ULIS | | 221 H_DCOFFSETD_R | raw ADC value of DC offset voltage, DLIS | | 222 H_IMP_FRM_ORG_X | X offset in meters from the Mars Surface Fixed Frame (MFX frame) to the origin of the IMP Frame. PDS MLL_MFX_OFFSET_VECTOR | | 223 H_IMP_FRM_ORG_Y | Y offset in meters from the Mars Surface Fixed Frame (MFX frame) to the origin of the IMP Frame. PDS MLL_MFX_OFFSET_VECTOR | | 224 H_IMP_FRM_ORG_Z | Z offset in meters from the Mars Surface Fixed Frame (MFX frame) to the origin of the IMP Frame. PDS MLL_MFX_OFFSET_VECTOR | | IMPSOFT LABEL
Item & Name | Description and/or FSW Structure Element (PDS keyword in boldface) | |------------------------------|---| | | | | 225 H_SUN_SOURCE | source of spin data | | 226 H_OGSE_STATUS | status of OGSE | | 227 H_OGSE_MSG | last msg from EGSE displayed on OGSE | | 228 H_OGSE_LAMP | lamp current | | 229 H_OGSE_SUNFILE1 | path of sun pulse file | | 230 H_OGSE_SUNFILE2 | path of sun pulse file | | 231 H_OGSE_SAMP | sun amplitude current | | 232 H_OGSE_SUNTABLE | sun table | | 233 H_OGSE_RPM | sun pulse RPM | | 234 H_OGSE_SPAN | sun pulse span value | | 235 H_OGSE_SIDEC | Si detector reference | | 236 H_OGSE_GEDEC | Ge detector reference | | 237 H_OGSE_EXTDEC | external detector reference | | 238 H_OGSE_5V | 5V reference | | 239 H_OGSE_TEMP | internal temperature | | 240 H_OGSE_SSS_TEMP | sun sensor stimulator temp. | | 241 H_OGSE_GN | analog ground noise | | 242 H_TELEM_SOFT | PDS SOFTWARE_NAME | | 243 H_IMAGE_TYPE | Image data type as specified in the image packet (regular image, dark current, flat field, etc.) PDS IMAGE_OBSERVATION_TYPE | (not used) 244 through 252